BUILDING AND STANDARDIZING THE BATTERY A PHYSICAL MOTOR TEST OF THE NATIONAL CENTER FOR HANDBALL PLAYERS

Nawras Ahmed Abd Zaid
Prof.Dr. Ammar Darwash Rasheed
University of Baghdad / College of Physical Education and Sports Sciences

Abstract

: Physical and motor abilities are the cornerstones of the sport of the handball game, which requires its practitioners to possess high physical and mobility abilities. The researchers work in the Ministry of Youth and Sports as test supervisors in order to avoid the existence of an integrated battery to measure the physical and motor abilities of the National Center for Athletics Therefore, the researcher built a battery of physical and motor test to benefit from the test of the Center's players.

Keywords: Building - standardizing- handball.

INTRODUCTION

Physical and motor abilities play a large role in the handball game, and the fact that this game of the games, which is characterized by roughness and the need for a great physical and mobility capabilities, which is one of the factors to reach the upper levels and the specialists of sports Shann rely on the correct scientific foundations that drive the wheel Progress is one of the most important scientific foundations, which is the use of tests and measurements. Tests and measurements are one of the most important factors to identify the level of development of the players as well as to identify the effectiveness. Here, Fartousi et al. (2015) points out that " The use of tests and measurement has played a major role in the evaluation and thus progress in physical education because it is a helpful factor in guiding students to know the
strengths and weaknesses of the physical qualities to be evaluated. "(Fartousi, 2015 , P. 17)

The purpose of this research is to build and standardize a physical and motor test battery to benefit from the knowledge of the level of the players of the National Center for the care of sports talent handball, as the researcher, through being a member of the Central Tests Committee at the National Center for Sports Talent noted that most of the batteries used in the center Do not meet all the requirements as most of them rely on non-domestic test batteries and standards do not apply to Iraqi players.

The researcher relied on many previous studies including Anwar (2013), in which a test battery for the basic skills of handball was built for students of the second stage at the Faculty of Physical Education at Salahuddin University. In another study (Muhammad,
(IJRSSH) 2019, Vol. No. 9, Issue No. IV, Oct-Dec
2012) (Jameel, 2013) through the method adopted by the researcher in building the battery as well as benefiting from the study (Janabi, 2009) and study (Rajab, 2013) in the construction of the battery Current.

MATERIALS AND METHODS:

Research Methodology:

The researcher used the descriptive method in the survey method to suit the nature of the research.
e-ISSN: 2249-4642, p-ISSN: 2454-4671

Search community and sample:

The research community consists of the players of the National Center for the care of sports handball in Baghdad and the provinces who are in the ages of 1617 years and the number of (80) players.

Nomination of physical and motor pulses tests:

)80 (\%as a condition for acceptance of the test. Table (1) represents the results of the agreement of the experts on the physical and mechanical tests, and then the development of these measurements in the analysis for the selection of The most appropriate of which is according to statistical processing in the method of global analysis.

Table (1): For special physical fitness tests under consideration
$\left.\begin{array}{|l|l||l|l|l|l|}\hline \begin{array}{l}\text { the } \\ \text { agreement\% }\end{array} & \text { Experts } & \text { the exams } & \begin{array}{l}\text { Special physical } \\ \text { abilities }\end{array} & \text { sequence } \\ \hline 86.66 & 13 & 14 & \begin{array}{l}\text { 1. Throw a medical ball to the farthest } \\ \text { distance by one arm }\end{array} & \begin{array}{l}\text { Explosive force of } \\ \text { the arms of the arms }\end{array} & \\ \hline 93.33 & 12 & \text { 2. Throw a medical ball from sitting on a } \\ \text { chair with arms }\end{array}\right)$
(IJRSSH) 2019, Vol. No. 9, Issue No. IV, Oct-Dec
e-ISSN: 2249-4642, p-ISSN: 2454-4671

80\%	12	3. Pull on the muzzle for minutes		
80\%	12	1. Jump to the top of the place for a minute	The power of the two men	6
86.66	13	2. The two men have a long jump for the longest distance		
80\%	12	3. Partition for maximum left and right distance for a minute		
80\%	12	1. Test run (20 m) from high start.	Transition speed	7
86.66	13	2. Test run (30 m) from the high start		
80\%	12	3. Test run (40 m) from high start		
100\%	15	1. Make Zakazak	Fitness	8
100\%	15	2. Multi-lateral run		
93.33	14	3. Slope-shaped slings (8)		
86.66\%	13	4. Shuttle Run		

Scientific foundations for physical and motor tests:
The researchers extracted the scientific bases for the tests that were identified for the variables of the study in question by applying the tests on a sample of the players from the non-research sample and the number of (12) players.

Table (2): Stability and self-honesty and objectivity of physical and motor tests used in research

Objectivity	Self- honesty	Stability	Physical tests used in research	sequen ce
0.800	0.890	0.820	Throw a medical ball to the farthest distance by one arm	1
0.820	0.920	0.850	Throw a medical ball from sitting on a chair with arms	2
0.880	0.890	0.800	Throw a handball to the farthest distance	3
0.830	0.850	0.710	Vertical Jump Test - Sargent	4
0.700	0.850	0.710	Test the wide jump of stability	(
0.910	0.940	0.880	Vertical jump test for higher rate	6
0.890	0.950	0.910	Tri-jump test with feet exchange of stability.	7
0.790	0.840	0.700	Test the front and press 15 seconds	8
0.770	0.880	0.780	Test the pull of the forearm by 15 seconds	9
0.880	0.900	0.820	Medical Ball Throw Test	10

(IJRSSH) 2019, Vol. No. 9, Issue No. IV, Oct-Dec
e-ISSN: 2249-4642, p-ISSN: 2454-4671

0.910	0.960	0.920	Test the hatch for the maximum distance1010 left and right	11
0.980	0.900	0.810	Front leaning for min	12
0.950	0.890	0.800	Pay in parallel to min	13
0.870	0.900	0.810	Drag on the mind for a minute	14
0.770	0.900	0.810	Jump to the top of the place for a minute	15
0.880	0.890	0.790	Jump the two legs for the longest distance repeatedly	16
0.900	0.840	0.710	Divide for the maximum left and right distance for a a minute	17
0.700	0.950	0.910	Test ran (20 m) from the high start.	18
0.850	0.950	0.910	Test ran (30 m) from the high start	19
0.890	0.950	0.900	Test ran (40 m) from the high start	20
0.870	0.710	0.710	Zaqzak ran	21
0.780	0.870	0.750	Multi-stream streaming	22
0.920	0.860	0.740	Slope winding (8)	23
0.780	0.880	0.770	Shuttle Run	24

In order to verify the validity of the tests in the research, the researchers extracted the level of ease and difficulty by presenting the statistical description of the candidate tests in the research field where the mean, standard deviation and torsion coefficient of the candidate tests were found. Table 3 shows that all torsion values are less than $1 \square$) This indicates that the tests used are distributed in a moderate distribution and that the tests on one level of difficulty show that the test is suitable if its distribution is normal and that the tests do not constitute severe torsion (Salah al-Din, 2000, p. 76)

Table (3)

Calculated t value		Lower grades		High grades		Name of test	seq uen ce
Values of signific ance	T	$i \pm p$	S	$i \pm p$	S		
0.000	18.000	0.000	16.000	0.229	16.947	Throw a medical ball to the farthest distance by one arm	1
0.000	13.435	0.229	4.947	0.229	5.947	Throw a medical ball from sitting on a chair with arms	2
0.000	37.000	0.000	30.000	0.229	31.947	Throw a handball to the farthest distance	3
0.000	21.892	1.264	251.526	1.827	$\begin{aligned} & \hline 262.00 \\ & 0 \end{aligned}$	Vertical Jump Test - Sargent	4
0.000	32.505	0.375	230.157	0.478	$\begin{aligned} & \hline 234.00 \\ & 0 \end{aligned}$	Test the wide jump of stability	5

0.000	21.769	0.229	34.947	0.315	36.894	Vertical jump test for higher rate	6
0.000	20.000	0.000	14.000	0.229	15.052	Tri-jump test with feet exchange of stability.	7
0.000	20.000	0.000	4.000	0.229	5.053	Test the front and press 15 seconds	8
0.000	20.000	0.000	3.000	0.229	4.053	Test the pull of the forearm by 15 seconds	9
0.000	22.317	0.315	31.105	0.419	33.790	Medical Ball Throw Test	10
0.000	37.000	0.000	2.000	0.229	3.947	Test the hatch for the maximum distance 1010 left and right	11
0.000	37.000	0.000	12.000	0.229	13.947	Front leaning for min	12
0.000	20.421	0.918	23.211	1.264	30.526	Pay in parallel to min	13
0.000	22.137	0.315	22.105	0.607	25.579	Drag on the mind for a minute	14
0.000	37.000	0.000	18.000	0.229	19.947	Jump to the top of the place for a minute	15
0.000	27.153	0.958	51.158	0.817	59.000	Jump the two legs for the longest distance repeatedly	16
0.000	38.460	0.513	60.474	0.000	65.000	Divide for the maximum left and right distance for a minute	17
0.000	28.059	0.513	90.526	0.419	94.790	Test ran (20 m) from the high start.	18
0.000	37.000	0.000	2.000	0.229	3.947	Test ran (30 m) from the high start	19
0.000	14.473	0.452	2.263	0.229	3.947	Test ran (40 m) from the high start	20
0.000	37.000	0.000	3.000	0.229	4.947	Zaqzak ran	21
0.000	37.000	0.000	6.000	0.229	7.947	Multi-stream streaming	22
0.000	18.000	0.000	12.000	0.229	12.947	Slope winding (8)	23
0.000	25.107	0.943	18.000	0.612	24.474	Shuttle Run	24

Excellent ability for motor, physical and skill tests:
After the main experiment, the two researchers extracted the perfect honesty for the physical, motor and skill tests. After collecting and unloading the data for the tests of the variables concerned with the study on the building sample, the raw grades for each variable were arranged in descending order from the highest grade to the lowest grade.) Of the highest grades (19) players and the same degrees of lower to show the ability of the tests selected to distinguish between the players of the building sample, as well as "one of the elements of honesty is the ability to test to distinguish between different capabilities." (Mashhadani, 2015, page 183) (T) is calculated using the statistical T test of the unallocated equal samples. After the statistical processing of the data, they were all shown to be highly discriminating between the upper and lower groups because the value of the significance at the freedom level of $-2=17$ is smaller than the significance of 0.05 and the two tables(4) Show that.

Table (4) shows the distinct ability of kinetic and physical tests

Calculated t value		Lower grades		High grades		Name of test	seq uen ce
Values of signific ance	T	$i \pm p$	S	$i \pm p$	S		
0.000	18.000	0.000	16.000	0.229	16.947	Throw a medical ball to the farthest distance by one arm	1
0.000	13.435	0.229	4.947	0.229	5.947	Throw a medical ball from sitting on a chair with arms	2
0.000	37.000	0.000	30.000	0.229	31.947	Throw a handball to the farthest distance	3
0.000	21.892	1.264	251.526	1.827	262.000	Vertical Jump Test - Sargent	4
0.000	32.505	0.375	230.157	0.478	234.000	Test the wide jump of stability	5
0.000	21.769	0.229	34.947	0.315	36.894	Vertical jump test for higher rate	6
0.000	20.000	0.000	14.000	0.229	15.052	Tri-jump test with feet exchange of stability.	7
0.000	20.000	0.000	4.000	0.229	5.053	Test the front and press 15 seconds	8
0.000	20.000	0.000	3.000	0.229	4.053	Test the pull of the forearm by 15 seconds	9
0.000	22.317	0.315	31.105	0.419	33.790	Medical Ball Throw Test	10
0.000	37.000	0.000	2.000	0.229	3.947	Test the hatch for the maximum distance 1010 left and right	11
0.000	37.000	0.000	12.000	0.229	13.947	Front leaning for min	12
0.000	20.421	0.918	23.211	1.264	30.526	Pay in parallel to min	13
0.000	22.137	0.315	22.105	0.607	25.579	Drag on the mind for a minute	14
0.000	37.000	0.000	18.000	0.229	19.947	Jump to the top of the place for a minute	15
0.000	27.153	0.958	51.158	0.817	59.000	Jump the two legs for the longest distance repeatedly	16
0.000	38.460	0.513	60.474	0.000	65.000	Divide for the maximum left and right distance for a minute	17
0.000	28.059	0.513	90.526	0.419	94.790	Test ran (20 m) from the high start.	18
0.000	37.000	0.000	2.000	0.229	3.947	Test ran (30 m) from the high start	19
0.000	14.473	0.452	2.263	0.229	3.947	Test ran (40 m) from the high start	20
0.000	37.000	0.000	3.000	0.229	4.947	Zaqzak ran	21
0.000	37.000	0.000	6.000	0.229	7.947	Multi-stream streaming	22
0.000	18.000	0.000	12.000	0.229	12.947	Slope winding (8)	23

(IJRSSH) 2019, Vol. No. 9, Issue No. IV, Oct-Dec
e-ISSN: 2249-4642, p-ISSN: 2454-4671

0.000	25.107	0.943	18.000	0.612	24.474	Shuttle Run	24

Global battery-recovery (and kinetic) construction:
The matrix of 276 correlation coefficients (not computed to the diagonal cells) is shown in the matrix.
Table (5)
The values of the underlying roots and the percentage of variance and the cumulative variation of the results of the physical and motor tests under study

Displays total contrast									
Values after rotation			Values before rotation			Initial self-values			
$\overline{\%}$ Cumulati ve percentage	\% Importance of factors	\% Inkind values	$\overline{\%}$ Cumulati ve percentage	Importance of factors	\% In- kind values	$\overline{\%}$ Cumulati ve percentage	Importance of factors	Values in kind	Factors
7.433	7.433	1.784	9.471	9.471	2.273	9.471	9.471	2.273	1
14.582	7.149	1.716	17.542	8.070	1.937	17.542	8.070	1.937	2
21.588	7.006	1.681	25.059	7.517	1.804	25.059	7.517	1.804	3
28.170	6.582	1.580	32.150	7.091	1.702	32.150	7.091	1.702	4
34.510	6.340	1.522	38.803	6.653	1.597	38.803	6.653	1.597	5
40.822	6.311	1.515	45.021	6.218	1.492	45.021	6.218	1.492	6
47.133	6.311	1.515	50.949	5.928	1.423	50.949	5.928	1.423	7
53.150	6.018	1.444	56.314	5.365	1.288	56.314	5.365	1.288	8
59.047	5.897	1.415	61.149	4.834	1.160	61.149	4.834	1.160	9
64.679	5.632	1.352	65.777	4.629	1.111	65.777	4.629	1.111	10
70.216	5.537	1.329	70.216	4.439	1.065	70.216	4.439	1.065	11
						74.272	4.056	. 973	12
						78.095	3.823	. 918	13
						81.606	3.511	. 843	14
						84.746	3.140	. 754	15
						87.294	2.549	. 612	16
						89.769	2.474	. 594	17
						92.013	2.244	. 539	18
						93.763	1.751	. 420	19
						95.421	1.658	. 398	20
						96.805	1.384	. 332	21
						98.085	1.279	. 307	22
						99.169	1.085	. 260	23
						100.000	. 831	. 199	24

(IJRSSH) 2019, Vol. No. 9, Issue No. IV, Oct-Dec
e-ISSN: 2249-4642, p-ISSN: 2454-4671
Table (6) The global matrix of physical and motor tests under study before recycling

The interpreter	P. 11	P. 10	P. 9	P. 8	P 7	P. 6	P. 5	P. 4	P. 3	P. 2	P. 1	Measurement
. 719	-.108-	-.351-	-.103-	. 102	-.212-	. 199	. 113	. 026	. 542	-.178-	. 373	A1
. 735	-.339-	. 143	. 280	. 348	. 255	-.028-	-.319-	-.219-	. 238	. 341	. 107	B2
. 695	. 183	. 076	. 160	. 041	. 130	. 512	-. 173-	. 148	. 250	-.427-	.230-	C3
. 650	-.065-	-.030-	-.012-	-.426-	-.214-	-.307-	-.085-	. 299	. 258	. 075	.393-	D4
. 644	. 254	. 160	. 449	. 041	-.221-	-.113-	-.062-	-.040-	. 188	-.405-	. 290	E5
. 724	-.017-	. 273	-.267-	. 019	. 054	. 333	. 313	. 591	. 002	. 112	. 064	F6
. 666	-.270-	. 164	. 072	-.140-	-.331-	. 108	-.276-	. 192	. 233	. 339	. 371-	G7
. 666	. 018	. 024	. 076	-.214-	. 014	-.047-	. 180	-.115-	. 729	. 155	.104-	H8
. 802	. 161	-.326-	. 195	-.367-	. 257	-.078-	-.168-	. 397	. 115	-.082-	. 468	19
. 731	. 184	. 159	-.006-	. 414	-.022-	. 023	. 276	. 575	. 265	. 085	.125-	J10
. 688	. 055	. 313	-.097-	-.040-	-.004-	-.199-	-.335-	. 483	-.137-	. 128	. 395	K11
. 804	-.040-	. 066	. 254	. 161	-.057-	-.244-	. 504	. 141	-.128-	-.204-	.559-	L12
. 595	. 265	. 127	-.103-	. 051	-.073-	. 150	-.095-	-.120-	-.035-	. 552	$\text { . } 371 \text { - }$	M13
. 706	. 273	. 511	. 053	-.094-	. 243	-.121-	. 195	-.250-	. 025	-.057-	. 425	N14
. 785	-.288-	-.164-	. 371	. 269	. 286	. 104	. 053	. 358	-.386-	. 206	. 224	015
. 701	. 311	-.423-	. 004	. 034	. 175	-.451-	. 196	. 184	-.139-	. 167	.265-	P16
. 656	. 114	. 006	-.103-	. 250	. 346	. 026	-.132-	. 068	. 321	-.464-	.330-	Q17
. 683	. 085	. 056	-.247-	. 239	-.427-	-.243-	. 328	-.179-	-.018-	. 037	. 414	R18
. 775	-.098-	-.099-	. 173	-.089-	-.558-	. 436	. 184	. 105	-.300-	-.249-	. 139	S19
. 578	. 128	-.103-	-.064-	. 158	-.206-	-.142-	-.199-	. 245	. 265	. 340	. 417	T20
. 671	-.336-	. 217	-.149-	-.491-	. 272	-.083-	. 291	. 125	-.043-	-.227-	. 116	U21
. 866	. 417	-.072-	. 161	-.288-	. 115	. 515	. 147	-.120-	-.139-	. 494	. 006	V22
. 588	-.163-	-.191-	-.350-	. 074	. 314	. 229	. 337	-.131-	. 237	. 159	. 183	W23
. 725	. 125	-.060-	-.471-	. 077	-.006-	. 076	-.507-	. 061	-.274-	-.346-	.125-	X24
	1.065	1.111	1.160	1.288	1.423	1.492	1.597	1.702	1.804	1.937	2.273	The underlying root

(IJRSSH) 2019, Vol. No. 9, Issue No. IV, Oct-Dec
e-ISSN: 2249-4642, p-ISSN: 2454-4671

Factor matrix after rotation:
Using the Varimax orthogonal rotation proposed by KESAR to increase the value of large spikes and reduce the value of small impurities through the dimensions of the axons that are not necessary to reach the best solution as shown in Table (7)

Table (7): The global matrix of tests under study after orthogonal rotation

The interpreter	P. 11	P. 10	P. 9	P. 8	P 7	P. 6	P. 5	P. 4	P. 3	P. 2	P. 1	Measurement
. 719	. 465	. 239	. 179	-.163-	. 051	. 261	. 291	-.344-	-.021-	. 066	. 329	A1
. 735	. 046	. 270	-.366-	-.390-	-.151-	. 241	-.532-	-.065-	. 066	-.005-	.016-	B2
. 695	-.056-	. 064	. 076	-.180-	. 128	-.018-	. 165	. 035	-.007-	. 777	. 012	C3
. 650	-.196-	-.195-	. 294	. 253	. 043	. 129	-.050-	-.067-	. 623	-.001-	. 097	D4
. 644	-.469-	. 165	. 141	-.133-	-.060-	. 289	. 197	-.272-	-.312-	. 151	. 199	E5
. 724	. 168	-.252-	-.087-	-.093-	. 753	-.069-	. 838	. 142	. 046	. 018	. 051	F6
. 666	-.134-	. 087	. 048	-.248-	. 107	. 105	-.055-	. 119	. 729	-.007-	.074-	G7
. 666	. 194	-.007-	. 396	-.029-	. 021	. 610	-.197-	. 015	. 195	. 122	. 082	H8
. 802	-.042-	-.178-	-.145-	. 189	-.041-	. 089	. 058	-.037-	-.067-	. 128	. 822	I9
. 731	-.012-	. 212	-.042-	. 173	. 772	. 164	-.045-	-.095-	. 042	. 132	.042-	J10
. 688	-.342-	-.095-	-.117-	-.167-	. 354	-.273-	-.184-	-.060-	. 018	-.249-	. 471	K11
. 804	-.226-	-.122-	-.085-	. 468	. 193	. 231	. 125	-.183-	. 063	. 114	.596-	L12
. 595	-.017-	. 272	. 125	. 016	. 097	-.060-	-.221-	. 575	. 226	-.086-	.232-	M13
. 706	-.201-	-.248-	. 182	-.220-	. 067	. 201	-.226-	. 106	-.627-	-.130-	. 072	N14
. 785	. 013	-.005-	-.561-	. 063	. 134	. 015	. 036	. 011	-.056-	-.056-	. 112	O15
. 701	-.005-	. 080	-.051-	. 510	. 615	-.006-	-.148-	. 058	. 027	-.088-	. 027	P16
. 656	. 078	. 056	. 164	. 107	. 101	-.113-	-.245-	-.293-	-.072-	. 649	.113-	Q17
. 683	. 081	. 207	. 248	-.041-	. 138	. 051	. 177	-.220-	-.332-	-.596-	.058-	R18
. 775	-.088-	. 015	-.116-	-.189-	. 021	-.035-	. 842	. 010	. 025	-.052-	.062-	S19
. 578	. 031	. 383	. 031	-.069-	. 229	. 669	-.110-	-.061-	. 077	-.312-	. 499	T20
. 671	. 090	-.594-	. 020	-.049-	. 643	. 061	. 013	-.138-	-.034-	-.033-	. 047	U21
. 866	. 103	. 039	-.058-	. 019	-.020-	. 160	. 153	. 883	-.096-	. 040	. 106	V22
. 588	. 717	-.095-	-.006-	-.046-	. 092	. 117	-.101-	. 054	-.164-	-.033-	. 012	W23
. 725	-.031-	. 068	. 162	-.027-	-.066-	-.793-	. 004	-.106-	. 031	. 209	. 047	X24

1.329	1.352	1.415	1.444	1.515	1.515	1.522	1.580	1.681	1.716	1.784	The underlying root
5.537	5.632	5.897	6.018	6.311	6.311	6.340	6.582	7.006	7.149	7.433	Contrast Ratio
70.216	64.679	59.047	53.150	47.133	40.822	34.510	28.170	21.588	14.582	7.433	Cumulative percentage

Table (8): Represents the descending order of the first factor after rotation

Saturation	Name of test	sequence	
. 822	Test the pull of the forearm by 15 seconds	1	First factor:
-.596-	Front leaning for min	2	
. 471	Test the hatch for the maximum distance of 10th left and right	3	
. 777	Throw a handball to the farthest distance	1	Factor 2:
. 649	Divide for the maximum left and right distance for a minute	2	
-.596-	Test ran (20 m) from the high start	3	
. 729	Tri-jump test with feet exchange of stability	1	Factor 3:
-.627-	Drag on the mind for a minute	2	
. 623	Vertical Jump Test - Sargent	3	
. 883	Multi-stream streaming	1	Factor 4:
. 575	This factor has been neglected because it did not meet the conditions for interpreting the factors		
. 842	Test ran (30 m) from the high start	1	Factor 5:
. 838	Vertical jump test for higher rate	2	
-. 532	Throw a medical ball from sitting on a chair with arms	3	
-.793-	Shuttle Run	1	Factor 6:
. 669	Test ran (40 m) from the high start	2	
. 610	Test the front and press 15 seconds	3	
. 772	Medical Ball Throw Test	1	Factor 7:
. 615	Jump the two legs for the longest distance repeatedly	2	
. 643	Zaqzak ran	3	
	This factor was neglected because it was not satisfied with any physical and motor tests and tests that were saturated with this factor were neglected because of their saturation with greater impurities on other factors.		Factor 8:

(IJRSSH) 2019, Vol. No. 9, Issue No. IV, Oct-Dec
e-ISSN: 2249-4642, p-ISSN: 2454-4671

$-.561-$	Jumping up the successive place for a minute has been neglected this factor because it did not meet the conditions of interpretation of factors	1	Factor 9:
	This factor was neglected because it was not satisfied with any physical and motor tests and tests that were saturated with this factor were neglected because of their saturation with greater impurities on other factors.		
Slope winding (8)	Factor X:		
.717	Test the wide jump of stability	Factor 11:	
$-.469-$	Throw a medical ball to the farthest distance by one arm	3	
.465			

Ultimate battery extracted for physical and motor abilities:
Table (9): Shows the final battery units and their radiations on the factors

Saturation	Name of test	Test code	Sequence of the agent
.822	Test the pull of the forearm by 15 seconds	I9	1
.777	Throw a handball to the farthest distance	C3	2
.729	Tri-jump test with feet exchange of stability	G7	3
.838	Vertical jump test for higher rate	F6	5
$-.793-$	Shuttle Run	X24	6
.772	Medical Ball Throw Test	J10	7
.717	Slope winding (8)	W23	11

In order to demonstrate that each test in the extracted battery measures a capacity independent of the other capabilities, a test was adopted. In addition to the above, the researchers adopted another test, the alienation factor, as shown in Table (18)

Table (10): It shows the links between the physical and mobile battery factors

الاختبارات							تسلسل الاختبار		Factor
W23	J10	X24	F6	G7	C3	I9			
0.189	0.222	0.110	0.107	1.00	0.298	1.000	Linking	I9	1
0.989	0.989	0.993	0.994	0.994	0.954		Exile		2
0.111	0.153	0.144	0.184	0.278	1.000	-	Linking	C3	$\begin{aligned} & 3 \\ & 5 \end{aligned}$
0.994	0.989	0.989	0.983	0.960			Exile		

0.211	0.111	0.111	0.151	1.000	-	-	Linking	G7	6 7
0.979	0.974	0.992	0.988				Exile		
0.187	0.199	0.111	1.000	-	-	-	Linking	F6	111
0.984	0.984	0,979					Exile		
0.144	0.122	1.000	-	-	-	-	Linking	X24	23
0.989	0.994						Exile		
0.200	1.000	-	-	-	-	-	Linking	J10	5
0.989							Exile		
1.000	-	-	-	-	-	-	Linking	W23	11
							Exile		

Discuss the tests from the global analysis:
Special physical and motor abilities are the goals of the players in sport in general and handball in particular, because the possession of handball for the abilities of the subject of research is one of the conditions of the game, especially that this target group is in a good stage of acquisition both physically and dynamically as well as the acquisition leads to the development of skills The mobility of the player as well as the plans and methods of play without them become the possibility of achieving the vocabulary of achievement is difficult, but may be impossible and show the importance of physical and motor capabilities, both public and private, linked to many vital areas such as intelligence and social achievement and maturity Emotional and physical strength, human production, physical and mental health, social growth, adaptation, late fatigue, stress, geriatric diseases, good use of spare time and unexpected emergency response.

The physical characteristics of the special play a crucial role in the implementation of the duties of the skills based on these qualities, and as the requirements of the game of handball is many and over two halves, the player must have some abilities and physical qualities and mobility to be able to solve the duties of the skill and planning and psychological strength and speed and handling and agility For some of the kinetic skills throughout the duration of the game, the physical preparation of the handball is the second stage of the player's preparation phase. This stage lasts from (4-6) weeks and is heavily based on the first stage of the preparation stage and the training To the specific specialization of the handball game, and is working on the development of fitness, taking into account the development of special muscle groups, which are more used in the game. "(Oreibi, 2004, page 208(

After the application of the tests on the rationing sample, the researcher extracted some descriptive statistics as shown in Table (19) and then extracted the standard degrees of the physical physics derived. The researchers extracted the Z-grade from the law used in the case of the unit of measurement of the test (time) and the equation as follows - the crude / standard deviation) and then this equation was introduced by extracting the standard score (T). (Hassanein, 2004, p. 154)

Table (11) shows the descriptive statistics of the research sample

Torsion coefficient	P	s	measruin g unit	Physical measurements	seq uen ce
.192	1.5128	4.8000	Repetitio n	Test the pull of the forearm by 15 seconds	1

(IJRSSH) 2019, Vol. No. 9, Issue No. IV, Oct-Dec
e-ISSN: 2249-4642, p-ISSN: 2454-4671

$-.013-$	1.7610	30.6125	cm	Throw a handball to the farthest distance	2
$-.169-$	1.6921	14.6500	Repetitio n	Tri-jump test with feet exchange of stability	3
.086	1.5325	30.9250	cm	Vertical jump test for higher rate	4
.147	1.9550	21.7250	a second	Shuttle Run	5
$-.198-$	2.6572	21.4500	Repetitio n	Medical Ball Throw Test	6
$-.213-$	1.3834	12.1000	a second	Slope winding (8)	7

Table (12): Shows the standard scores (ZA and T)

T	Z	Raw	T	Z	Raw	the test
57.93	0.79	6	38.1	-1.19-	3	Pull the forearm with the arms 15 seconds
64.54	1.45	7	44.71	-0.53-	4	
			51.32	0.13	5	
52.2	0.22	31	35.16	-1.48-	28	Throw a handball to the farthest distance
57.88	0.79	32	40.84	-0.92-	29	
63.56	1.36	33	46.52	-0.35-	30	
52.07	0.21	15	34.34	-1.57-	12	Triangular jump with the exchange of feet of constancy
57.98	0.8	16	40.25	-0.98-	13	
63.89	1.39	17	46.16	-0.38-	14	
57.01	0.7	32	37.44	-1.26-	29	Vertical Jump Up Rate
63.54	1.35	33	43.96	-0.60-	30	
			50.49	0.05	31	
43.48	-0.65-	23	63.94	1.39	19	To test the shuttle runway
38.36	-1.16-	24	58.82	0.88	20	
33.25	-1.68-	25	53.71	0.37	21	
			48.59	-0.14-	22	
48.31	-0.17-	21	33.25	-1.67-	17	Medical Ball Throw Test
52.07	0.21	22	37.02	-1.30-	18	
55.83	0.58	23	40.78	-0.92-	19	
59.60	0.96	24	44.54	-0.55-	20	
63.36	1.34	25				
43.49	-0.65-	13	65.18	1.52	10	Slope winding (8)

REFERENCES:

Ahmed Oreibi. (2004). Handball analysis and testing. Baghdad: Sinary office. -

- Dawood Thaer Salman. (2015). ; Exploratory analysis. Najaf: Dar Al Diaa Press.
- Saad Bassem Jameel. (2013). Build battery tests for special fitness elements for elite elite handball players. Rafidain Magazine for Sports Sciences, 19 (63)
- Abdel Moneim Jassim Al-Janabi. (2009). Build battery tests for the skillful selection of football players with ages. Al-Rafidain Magazine for Mathematical Globalization, 14 (50).
- Ali Samoum al-Fartousi. (2015). Measurement, testing and evaluation in the sports field. Baghdad: dominant for printing and publishing.
- Kamal Jassim Mohammed. (2012). Preparing a test battery for special physical abilities as an indicator of the selection of talented handballs in Diyala Governorate. Journal of Sports Science, 4 (4).
- Mahjoub Ibrahim Al-Mashhadani. (2015). Tests and standards in the field of physical education and physical education sciences. Baghdad: Dar House for Printing and Publishing.
- Mohamed Bouziane Tevez. (2012). Analytical and Exploratory Scientific Analysis, Amman, Dar Al - Massirah for Publishing and Distribution.
- Mohamed Subhi Hassanein. (2004). Measurement and Evaluation in Physical Education and Sports. Cairo: Arab Thought House.
- Mohamed Allam Salah El Din. (2000). 1. Analysis of psychological, educational and social research data. Cairo: Arab Thought House.
- Mohamed Hassan Allawi, and Mohamed Nasr Eddin Radwan. (1987). Psychological and psychological tests in the sports field. Cairo: Character of Arab Thought House.
- Muzaffar Anwar. (2013). Building a battery testing the performance of the basic skills offensive handball for students of the second stage - Faculty of Physical Education - University of Salahaddin. Journal of Sports Science, 5 (4)
.Hara. (1990). Training assets. BAGHDAD: Printed in Offnest printers -
- Walid Khalid Rajab. (2013). Building battery tests for basic skills of football futsal players for junior high school teams in the city of Mosul. Rafidain Journal of Sports Science, 19 (61).

